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Abstract

This work investigates approaches of injecting structured knowledge from knowledge graphs
into transformer language models and evaluates their effect on State-of-the-Art Sentence
Embedding Models for semantic textual similarity (STS) tasks. In order to do this, this work
focuses on using Adapter-networks to inject this knowledge.
To ensure a useful contribution to the research-field of Adapters, the results are kept compa-
rably to current works and are evaluated on both general and domain-specific datasets.
The usefulness of Adapters for STS-tasks is evaluated both in supervised and unsupervised
environments and an alternative process of Adapter-training is evaluated.
Adapters are found to perform well on STS-tasks, achieving similar performance to a full
training of the entire model and to be able to provide a cheap method of domain-specific
finetuning of general world STS-trained models.
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0.1 Motivation

Semantic Textual Similarity (STS) describes the ability to attribute a similarity score to
sentences with a similar meaning. This is an essential problem in natural language processing,
as it has a significant impact on several downstream tasks such as information retrieval, text
classification or question answering [1].

Sentence embeddings map complex sentences to a high-dimensional space in order to
achieve similarity comparison and information retrieval from sentences. While transformer
language models (TLM) can be used to generate semantic sentence embeddings by using the
SBERT-Approach [2], they fail to capture rich factual knowledge [3]. The effect of injecting
factual knowledge from knowledge graphs is thus expected to further improve the generated
embeddings.
While a TLM is pre-trained on tasks like Language Modelling, finetuning these models
(e.g. BERT) is a resource-intensive task [4]. To alleviate this problem, Adapters have been
introduced to finetune a language modelling model while only training a small set of
parameters.

This work looks into the effect of various Adapter-architectures on the performance of Sen-
tence Embedding Models, with the goal to incorporate structural knowledge from knowledge
graphs into sentence embeddings.

0.2 Related Works

The Houlsby Adapter [4] was introduced in 2019, and along with the Pfeiffer Adapter [5]
belongs to the most commonly used Adapter models. In previous papers, Adapter models
have sucessfully been used for multiple tasks, e.g. Language Translation [6] and Speech
Recognition [7]. This work however is the first one to look into the applicability of Adapter
models to STS-tasks and give an overview of their domain-adaptability.
Two examples of works looking into gathering knowledge from Knowledge Graphs are
the K-Bert approach [8] and the KGLM approach [9]. Similar to this work, K-Bert uses an
Adapter-like addition to a Bert model to inject domain-specific knowledge into sentence
embeddings. Furthermore does this work build upon the works of SimCSE [10] as the current
State of the Art when it comes to Sentence Embeddings. Most importantly, the supervised
SimCSE approach uses a contrastive approach distinguishing similar and dissimilar sentences
within a dataset. This contrastive training approach is leveraged in this work, as contrastive
training is suitable when trying to extract information from a Knowledge Graph [10]. Another
popular training methodology has been introduced by the SBERT-Paper [2], using a siamese
BERT model which is trained to correctly classify either similar or dissimilar sentences.
Similar to this work, the SPECTER paper [11] introduces means to learn Document Embed-
dings from a Knowledge Graph, or more precisely a citation graph. As already introduced, it
uses a contrastive training objective to do so, comparably to the SimCSE paper.
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0.3 Datasets

In the following, the used datasets are introduced, motivated and their generation process is
described, in order to guarantee reproducibility of the results. For the upcoming experiments,
both a common-world dataset is needed, as well as domain-specific datasets.

0.3.1 TREx-rc Dataset

The TREx-rc dataset is a shortened version of the TREx dataset [12]. It provides sentences
from Wikipedia abstracts aligned with knowledge triples (source object, relation, target object).
In the case of contrastive STS-training, a notion of sentence-similarity is needed to provide a
sentence deemed similar and a sentence deemed dissimilar to a certain anchor sentence. Thus,
sentences are grouped by relations and two sentences having the same targets are deemed
similar while sentences of different targets are seen as dissimilar. For clarification, consult the
following example:

Yelena Isinbayeva and Bob Richards are the only two athletes to win two Olympic pole vault
titles, and also the only two athletes to win more than two Olympic medals in the discipline.

Buisson represented France at the 2008 Summer Olympics in Beijing, where she successfully
cleared a height of 4.15 metres in the women’s pole vault, an event which was later

dominated by world-record holder Yelena Isinbayeva of Russia.

Four days later, El Guerrouj outsprinted 10000 metres gold medalist Kenenisa Bekele to take
the 5000 metres gold medal and never competed internationally again, officially retiring in

2006.

It can easily be seen, that the first two sentences are very similar, both being about Olympic
pole vaulters. While the third, negative example is similar enough to be comparable to the
first two, it is important to distinguish the fact that this sentence is about a sprinter, thus
being dissimilar to the first two.
Such a dataset processing enables the model to distinguish the important parts of sentences
and ensures an understanding of the actually important facts of sentences.

0.3.2 SciDocs Dataset

The SciDocs dataset consists of scientific papers and their citation information. For usage
in this work, the abstracts of related and unrelated papers are of interest. More precisely,
a sample consists of a paper’s title, a separator and the abstract of the paper. Since the
BERT-architecture only allows for 512 tokens, the samples are cut off at the respective length.
This same approach was already taken in the SPECTER paper [11] which was published
alongside the SciDocs dataset and is thus seen as a reasonable choice, especially given the
gist of the paper being mostly described in the title and in the beginning of the abstract.
For a certain anchor sample a positive sample is taken directly from a referenced paper. The
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Base Model Parameters Parameters Houlsby Parameters Pfeiffer Parameters K-Adapter
Bert-base 110M 4M 10M 47M

Roberta-large 355M 6M 12M 47M

Table 1: Amount of trainable Parameters for different base models and Adapter architectures

negative sample is once again deemed to be similar to the previous two papers, however
less related than the positive sample. To ensure comparability, the same approach as in the
SPECTER paper is used, which defines a negative sample as a paper which was referenced
by the positive paper but not by the anchor paper itself.
This approach is reasonable as all abstracts are about the same topic but the positive sample
is more related to the anchor paper than the negative one. This also justifies the very similar
approach used for the TREx-rc dataset.

0.3.3 AskUbuntu Dataset

The AskUbuntu dataset [13] is another domain-specific dataset. It already consists of sentence-
pairs which are deemed similar, anchor- and positive samples are thus easily found. Since
the dataset inherently consists of sentences about a similar topic, being the operating system
Ubuntu, negative sentences can easily be retrieved by sampling different sentences. The
dataset is convenient for this work, as it is in the technical domain, similarly to the SciDocs
dataset, however differs significantly in its use of language, since it is closer to everyday
language which differs quite significantly from the technical language used in papers. Thus,
both domain-specific datasets show the technical domain from different perspectives and are
thus comparable.

0.4 Adapter Architectures

Adapters provide an efficient method of finetuning an existing model to a certain task or
dataset [4]. In general they enable to further tune an already trained model to an extended set
of data or a different task without overwriting the already trained weights. Thus knowledge
from multiple sources can be combined and exchanged. This in general is achieved by adding
intermediate layers within a base model which are initialized to the identity function, thus
not changing the base models behaviour [4, 5]. Freezing the base models parameters ensures
keeping the knowledge already learned in the base model.
As this work tries to give a holistic view on STS-Adapters in multiple use-cases, three different
Adapter-architectures are compared. The Houlsby- and the Pfeiffer-Adapters are already
well-established architectures and widely used in the field. Since they are both very similar
in their core idea, the K-Adapter is also used for comparison following an entirely different
structure.
For reference, the table 1 depicts the amount of parameters per Adapter model compared to
the base model, highlighting the efficient nature of Adapters.
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0.4.1 Houlsby-Adapter

The Houlsby Adapter is the first Adapter proposed by Houlsby et al. [4] and was mostly
developed with a focus on circumventing the catastrophical forgetting problem, which
originates in the issue that when training a model on a certain objective, weights previously
trained on a different objective are overwritten. Thus, the learning procedure of freezing a
base model and injecting trainable layers, which are initialized to the identity was developed.
In consequence, multiple downstream tasks could be trained based on a certain base model,
while only a small amount of intermediate weights are added per task.
Most notable was the discovery that performance stayed mostly the same as compared to
training an entire model while only training a very small subset of parameters.
The model is classified as a bottleneck Adapter, meaning an architecture which is located in
between the transformer layers of the base model and whose layers transform its input into a
very low-dimensional representation and upsampling it again to the same dimension in the
output. Thus a parameter-efficient lower-dimensional representation is generated while most
information is kept.

0.4.2 Pfeiffer-Adapter

The Pfeiffer Adapter [5] was developed in 2020 with a focus on multi-task learning. In
contrast to the already introduced Houlsby-Adapter, it introduced a way to merge multiple
trained adapters, and thus merge the knowledge from multiple tasks.
In this work, however, this multitask learning capability is not needed, and it is only used in
the single-task mode. Due to its popularity the Pfeiffer Adapter is still a relevant architecture
to compare its performance.

0.4.3 K-Adapter

The K-Adapter [3] uses an architecture, that in contrast to the previously introduced models
works as an external plug-in. An Adapter-Layer uses the output of an intermediate trans-
former layer in the base model and concatenates it with the output of a previous Adapter
layer, if any. In the end, the final Adapter-Layers output is concatenated with the base models
output and transformed into the correct output dimension with a simple Dense Layer.
Still, each Adapter layer is in structure very similar to the previously proposed models, archi-
tectures, again being a Bottleneck Layer. The important new feature of the K-Adapter is the
possibility to combine multiple external K-Adapters, whose outputs are simply concatenated
in the end to retrieve the output of the entire model.
This adapter is especially interesting due to its vastly different structure and its random
initialization, compared to the identity-initialization of the two formerly introduced Adapters.
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0.5 Suitability of Adapters on STS-Tasks

While Adapters have successfully been employed for multiple tasks, there is no record of
Adapters being evaluated on Semantic Textual Similarity (STS)-tasks. This is a particularly
interesting field of usage for Adapters, since STS-trained models can be used in a variety
of downstream tasks [14]. The ability to simply plug in an adapter into an existing model
and enhancing such downstream-tasks motivates the following experiment. It showcases
the usability of Adapters for general-world knowledge STS-tasks while only training the
efficiently low amount of parameters of the Adapter, thus lowering the effort to train and
make use of STS-models.

0.5.1 Methodology

Since STS-tasks are used to evaluate the semantic similarity of sentences and short texts,
the model has to learn a notion of similarity from a collection of sentences. The current
State-of-the-art is achieved by SimCSE [10], which uses a contrastive approach to distinguish
similar from less similar sentences.

A positive sample x+i and negative sample x−i for a certain anchor sentence xi results in the
following contrastive training objective, using their respective embeddings h+i , h−i and hi:

L = − log
esim(hi ,h+i )/τ

∑N
j=1 esim(hi ,h+j )/τ + esim(hi ,h−j )/τ

(0.1)

The formula also employs a temperature scaling factor τ, which is empirically set to 0.05.
The preprocessing of the used datasets has already been described in section 0.3. As a base
model, the roberta-large model is used, just as in similar papers [3]. The Adapter-models are
finetuned for 5 epochs on the TREx-rc dataset using the above mentioned approach, and a
learning rate of 1e−5.
To put the results into context, they are compared to the performance of the fully finetuned
roberta-large model on the TREx-rc dataset.

0.5.2 Results

In figure 2, the finetuned models are evaluated against 7 STS-tasks, comprised of the STS
2012-2016 [15, 16, 17, 18, 14], STS Benchmark [19] and SICK-Relatedness [20] datasets, with
the evaluation score being the average Spearman correlations achieved in all datasets.
These datasets are also used in the evaluation of the K-Adapter paper [3] and are thus
reasonable to get a full evaluation of the model performances. Although far less parameters
are trained (cf. 1), the results are very similar to that of the finetuned roberta-large model. This
result is especially interesting due to the lower compute-power used to get very comparable
results. The Pfeiffer-Adapter performs the best out of all the Adapter-architectures and
as the only architecture manages to be on-par with the finetuned base model. On closer
inspection of the results, however, the performance difference to the finetuned base model
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Model STS12 STS13 STS14 STS15 STS16 STS-B. SICK-R. Avg.
Houlsby-Adapter 76.69 86.87 82.18 86.30 84.14 86.87 79.59 83.23
Pfeiffer-Adapter 77.93 87.00 82.60 87.31 83.50 86.74 80.92 83.71

K-Adapter 76.00 86.93 81.28 86.50 83.76 86.23 80.08 82.97
Finetuned roberta-large 77.87 87.24 82.56 87.17 84.62 86.26 79.93 83.68

Table 2: Evaluation-scores for different architectures after finetuning on a common world
STS-task.

varies between tasks and the Pfeiffer Adapter is outperformed considerably on the STS16 task
while it outperforms on the SICK-Relatedness task.

0.5.3 Discussion

While the results are looking very promising, having achieved very similar performance
compared to the finetuned base model, the performance on single tasks varies a lot, with
no method clearly outperforming on all tasks. This phenomenon can be explained with
the different nature of the tasks, with the STS16 task employing news-article headlines and
Wikipedia data [14], similar to the TREx-rc dataset while the STS12 task focuses more on
machine translation evaluation corpuses from far more diverse sources [15].
In the end, the Adapter-architectures did not outperform the finetuned base model and
produced slightly worse results while the performance-offset varied across tasks.

0.6 Fine-tuning methods of Adapters

Adapters have been introduced as methods to finetune a certain model to a specific task or
new data. In order to accomplish this, the approach of freezing the base model’s weights and
and only finetuning the Adapter on the new task at hand has initially been proposed [4, 5]
and since an Adapter uses far less parameters than the entire base model, an efficient method
of pretraining was introduced.
As already introduced in the preceding experiment, Adapters achieve a very similar perfor-
mance to a model which was fully trained on the same task. This however motivates the
question, if Adapter-induced models can further benefit from adding an additional phase to
the training procedure.
After finetuning the Adapter, the entire base model is unfrozen and trained in conjunction
with the Adapter on the task. This answers the question whether the remaining performance
gap can be alleviated by providing more parameters to the Adapters.

0.6.1 Methodology

Using a common world dataset, the different Adapter architectures are evaluated after the
classical training procedure and additionally after the finetuning of the entire model. The
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Adapter Architecture Pretraining Phase Basemodel refining phase
Finetuned Houlsby-Adapter 83.23 83.31
Finetuned Pfeiffer-Adapter 83.71 83.70

Finetuned K-Adapter 82.97 83.11

Table 3: The evaluation scores for the Adapter architectures after the standard finetuning
process and after the appended phase of unfreezing the basemodel’s weights.

learning rate is kept at 1e−5 and the training is first conducted for 5 epochs. In the newly
introduced step, the training is commenced for another 3 epochs.

As a base model, the roberta-large model is used, which extends on the results of the
previous experiment. The Adapter-architectures are trained on the TREx-rc dataset, after
which the base model is unfrozen as well and in the newly introduced step trained in
conjunction with the Adapter.

0.6.2 Results

The following table 3 shows the evaluation-scores after the different training-phases. Interest-
ingly, the phase of unfreezing the base model does not seem to further enhance the results as
across the Adapter-architectures, no significant performance-gains can be seen.

0.6.3 Discussion

Unfreezing the base model and training the entire model on the task would be expected
to increase performance, as a higher amount of parameters is introduced for training. It
was found that this is not the case for multiple Adapter architectures. Thus, the amount
of parameters within an Adapter are no bottleneck for its learning capabilities, and the
performance of Adapters can mostly be attributed by their structure and the idea of spreading
the Adapter-weights across the Transformer model.
This finding is very interesting, as it highlights the ability of an Adapter model to achieve
results very competitive with State-of-the-Art models such as Bert and Roberta while using
only a small fraction of parameters. However, the interpretation of this result might pose a
more difficult task, as the possible performance-gain is limited by the fully trained model, as
seen in section 0.5. Thus, a performance-gain which can be interpreted as significant might
not be possible.

0.7 Domain-Adaptation on STS-Tasks

While a lot of general world knowledge-graphs exist for training an STS-model, domain-
specific data is much more scarce. Thus, this field would highly benefit from a parameter-
efficient and in consequence data-efficient way to train on domain-specific data. The following
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section analyzes the performance of an STS-model which is trained on a general world dataset
and is finetuned to multiple different domains by the Adapter-model alone.

0.7.1 Methodology

To test the Domain-Adaptability of STS-Adapters, a generic STS-base model is enhanced
with a domain-specific Adapter. In order to make these results comparable to the related
SPECTER paper [11], a base model of same parameter-size is used. Thus, the princeton-
nlp/sup_simcse_bert_base model from the SimCSE paper [10] is used as a base model as it is
already pretrained on sentence similarity tasks using the TREx-rc dataset.
The 3 adapter models are finetuned on 2 domain-specific datasets, and their performance
is compared to the initial performance of the general base model as well as the finetuned
base model. The domain-specific datasets are divided into a training- and a test-split with a
90%/10%-split. To ensure a general discussion about the usefulness of the architectures for
the task, the default values for all adapters are kept and are not tuned to each dataset.
Additionally, a different loss-function is evaluated, in addition to the already introduced loss
function from the SimCSE-paper [10].
This loss-function was introduced in the SPECTER-paper [11] and is added here for compara-
bility reasons. It is based on the hinge-loss, however used in a contrastive context, resulting in
a similar loss-function to the SimCSE-loss. In this case, the distance-function d(�, �) describes
the L2 distance and the loss margin hyperparameter m was set to 1 as described in the paper.

L = max{(d(hi, h+i )− d(hi, h−i ) + m), 0} (0.2)

As motivated in the SimCSE paper, the loss-function 0.1 ensures an distribution of embed-
dings around the entire embedding space. Since this is not ensured in this case, we expect a
decline in performance using the loss-function 0.2.

0.7.2 Results

The table 4 shows the results of the respective experiments. We can firstly see the vastly
suboptimal performance of the base model alone. Since the training data differs vastly
from the domain-specific test data, the model fails to make accurate predictions on the test
data. While this effect can be seen for both domains, the adapters in general vastly help
the performance in all cases. We can see that both the Pfeiffer and the Houlsby-Adapter
incorporate the new data similarly well, with the K-Adapter achieving slightly worse results.
The finetuning of the entire base model outperforms the Adapter-models, however the
Houlsby-Adapter achieves a very similar performance.
Lastly, the table 5 shows very similar results, with the same phenomena visible when using
the SPECTER loss-function. As expected, the results are slightly worse than the previous
experiment.
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Model AskUbuntu SPECTER Average
Cite CC CR CV

princeton-nlp/sup_simcse_bert_base 60.3 79.3 82.10 76.87 78.36 75.39
Finetuned princeton-nlp/sup_simcse_bert_base 65.2 88.3 88.11 84.46 83.63 81.94

Finetuned Houlsby-Adapter 64.5 87.3 89.01 82.41 84.42 81.53
Finetuned Pfeiffer-Adapter 64.2 87.0 88.63 81.98 84.41 81.24

Finetuned K-Adapter 62.8 85.3 87.92 80.05 83.29 79.87

Table 4: The evaluation scores of the Adapter architectures on the two domain-specific datasets
using the SimCSE loss 0.1.

Model AskUbuntu SPECTER Average
Cite CC CR CV

Finetuned princeton-nlp/sup_simcse_bert_base 65.3 88.0 87.74 84.15 83.32 81.70
Finetuned Houlsby-Adapter 64.0 88.2 88.69 82.42 83.99 81.46
Finetuned Pfeiffer-Adapter 63.8 87.8 88.73 81.65 83.27 81.05

Finetuned K-Adapter 62.5 85.6 87.70 80.09 82.85 79.75

Table 5: The evaluation scores of the Adapter architectures on the two domain-specific datasets
using the SPECTER loss 0.2.

0.7.3 Discussion

This experiment yields multiple very interesting insights, since independently of the domains
and datasets, the Adapters succeed in incorporating the new data into their predictions. The
results are very competitive, but fall slightly short of the finetuning of the entire base model.
This however is to be expected and still a very good result, since the Adapter-training is far
more efficient than training all of the base model’s parameters. The results are very similar
for both domains and motivate the usage of Adapters for domain-adaptation of general
STS-models.
Due to the Adapters freezing the pretrained STS-base model, there would be reason to
justify an increase in knowledge in the Adapter-induced models since the previously known
STS-solving capabilities of the base model are preserved. However, such a combination of
the general world STS-trained base model and the domain-specific Adapter-training can not
be seen in these results. Thus, the performance-difference between the two approaches is
surprising and can be attributed to the architecture of the Adapters which only can act upon
a certain subset of layers within the base model.
Hence, the usage of the pretrained state of the base model only further shortens the training
time needed to adapt to the new domain.
Furthermore we can see the effect of the two different loss-function, which was already
discussed in the SimCSE-paper; the SimCSE-loss seems to more accurately learn from the
data as the loss introduced in the SPECTER-paper.
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0.8 Unsupervised improvement of STS-Adapters

Textual data benefits largely off of unsupervised training procedures, such as Masked Lan-
guage Modelling. This is due to the fact, that the grammatical structure of textual data can
easily be learned without human supervision or change of datasets. This largely increases
the datasets usable for learning, since supervised data-annotation in general is a tedious and
costly task.
Due to this, unsupervised models are of great interest to the research community, however
often fail to produce competitive results. This encourages the following experiment which
aims at improving an unsupervised learning process of a model by plugging in an Adapter
which was previously trained on supervised knowledge.

0.8.1 Methodology

The experiment is based on the idea that a model which was trained in a supervised fashion
yields a good starting point for an unsupervised training and thus increases the performance
resulting after the unsupervised training procedure. Given a roberta-large base model and a
dataset of sentence-triples, similarly to the previous experiments, the unsupervised training
strategy of the SimCSE paper [10] is used to train the model on sentence similarity. This
unsupervised training strategy is very similar to the already introduced supervised SimCSE
strategy, but given a certain sentence xi, produces an embedding hi by piping it through the
transformer layers of the used model. Due to the stochastic nature of transformers, piping
the same sentence through the model again, results in a different embedding h+i , which is
used as the positive sample.

A negative sample h−i is produced by following this process for an arbitrary, different
sentence. Having created an artificial sentence-triple, the already introduced loss-function
0.1 is used. Thus, the model can learn STS-tasks from any unlabelled collection of sentences,
enabling the use of nearly arbitrarily large datasets.
Since pretrained Adapters are widely available, the suggested improvement is to first plug-in
a pretrained Adapter, adding a certain STS-solving capability from the start. The model thus
trains both the base-model and the Adapter in the unsupervised fashion, capitalizing on the
pretrained Adapter-weights, and being able to better grasp the relevant factors in contrast to
the fully unsupervised start.
For this experiment, the general world dataset TREx-rc is used.

0.8.2 Results

The table 6 shows the results for the unsupervised training and the Adapter-induced unsu-
pervised training. Interestingly, we can see the superiority of an Adapter-initialization of an
unsupervised training-procedure while the actual training-process was left untouched.
This result is highly encouraging and a possible topic for further research. The Houlsby-
Adapter has very consistently outperformed the Pfeiffer-Adapter, which is surprising due to
its smaller amount of parameters.
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Model STS12 STS13 STS14 STS15 STS16 STS-B. SICK-R. Avg.
Unsupervised 71.27 83.75 75.26 85.04 81.17 81.69 70.84 78.43

Houlsby-Adapter 73.37 84.89 76.21 87.24 83.17 81.75 72.63 79.90
Pfeiffer-Adapter 72.49 83.62 76.14 85.54 82.63 81.55 72.43 79.20

K-Adapter 72.47 83.55 75.20 85.09 82.42 81.64 71.80 78.88

Table 6: The evaluation scores of the Adapter-induced unsupervised learning processes.

0.8.3 Discussion

The results clearly show the ability of the models to make use of the supervised Adapter-
initializations and incroporate these into the further unsupervised training procedure. Simi-
larly to the previous experiments, the K-Adapter is outperformed by both the Pfeiffer- and the
Houlsby-Adapter. In this case, the Houlsby-Adapter has outperformed the Pfeiffer-Adapter,
in contrast to the results in previous experiments, showing the highly task-dependent perfor-
mance of the Adapters.

0.9 Conclusion

This work has looked into the training-peculiarities of Adapters for STS-tasks. Multiple
different Adapter-models have been evaluated and different datasets have been used to
answer the following research questions:

0.9.1 How to inject structured knowledge into Sentence Embedding Models with
Adapters?

The experiments have shown that the knowledge obtained from the Knowledge Graph
datasets have successfully been learned by the Adapter-induced models. Since Knowledge
Graphs are made of data-triples, contrastive learning methods were seen as intuitive and
shown to be effective.
In order to make this result meaningful, two different training objectives have been employed,
based upon the State-of-the-art SimCSE-work [10] and the SPECTER-paper [11], which
introduced a similar loss-function. Both training objectives have succeeded in injecting the
knowledge from the data-triples into the models, with the SimCSE-loss performing slightly
better than the SPECTER-loss.
In conclusion, structured knowledge was proven to be embeddable into Sentence Embedding
Models using contrastive loss functions. The training process consisting of freezing the base
model and training only the Adapter weights was seen as sufficient and nearly matching the
results compared to a full training of the entire model. The injection of structured knowledge
can thus be seen as a success.
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0.9.2 Do Knowledge Adapters improve information retrieval tasks of Sentence
Embedding Models?

Similar to previous works, this work has successfully shown a very similar performance
of Adapter models compared to the full finetuning of the entire base model. Especially
interesting is the performance being on-par in a multitude of different situations, such as
the domain-specialization on different domains, the general-world knowledge extraction and
across multiple different architectures of Adapters. This performance is achieved while only
training a small amount of parameters, leading to Adapter models being deemed superior to
training the entire basemodel in a situation of limited compute-power.
Furthermore does the smaller amount of parameters lead to faster training and less carbon
emissions during training. Notable also is the improvement of unsupervised methods using
supervised Adapters, which is applicable since the Adapters are freely available in a pre-
trained state and can thus be embedded into any unsupervised learning process. The positive
results of these experiments highlight the improvements Adapters can bring to sentence
embedding models. As a conclusion, Knowledge Adapters do improve information retrieval
tasks by firstly introducing a method of finetuning to new data and secondly introducing a
very cheap way to build upon pretrained common knowledge models.
However, the performance of the finetuned base model was not exceeded in the case of
supervised training, thus limiting the benefits of Adapters to the amount of compute time
and comparable metrics, while introducing a small decrease in performance.
Lastly, there was not found to be an architecture of Adapters that outperformed its coun-
terparts continuously, highlighting the task-dependent performance of Adapters relatively
to eachother. Only the K-Adapters performance was consistently worse than the other
architectures.

0.9.3 How to combine domain-specific knowledge adapters for the scholarly
domain?

This work has looked into two different domains, firstly the scholarly domain, using the
SPECTER-dataset, and secondly the technical domain, within the AskUbuntu-dataset. The
experiments have shown a successful domain-adaptation using the Adapters in both cases,
leveraging the knowledge distilled in the base models and using the domain-specific data
to easily get to a similar performance compared to finetuning the entire model. However,
there was not found any evidence of combining knowledge from the base model and the
domain-specific adapter, since the performance of the base model was not reached. In general
we can see that both the Houlsby and the Pfeiffer Adapter perform very similarly in domain
adaptation, making both architectures very convenient for usage in multiple use-cases. The
K-Adapter architecture however was consistently outperformed and is thus not recommended
for usage.
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